

TDAQ Global Firmware WBS 6.8.3

Stephanie Majewski, University of Oregon

Meeting with Institute Contacts
April 7, 2017

Global Hardware Proposal (MB, DS)

Serial-to-Time Multiplexed Architecture

- Maximize physics potential by concentrating event data in a single location
 - o requires one system to transport data and one to process event
 - o serial data (per BC) sent to Global Trigger are time multiplexed by a Multiplexer board (Mux)
 - Mux transports data to one of many Global Event Processors (GEP) to run trigger algorithms
 - o GEP interface with CTP & RoIE (via Demultiplexer?)
 - all interfaces under discussion

Incoming channels

1 1 1 1

2 2 2 2

Carrier

Nulliplexer

De-multiplexer

De-multiplexer

Serial-to-Time Multiplexing

- N inputs in 1 BC → 1 output in N BC
- input multiplicity driven by latency
- output multiplicity driven by number of data sinks
- inputs & outputs can have different link speeds

LO & L1 trigger within same electronics module

BROOKHAVEN NATIONAL LABORATORY

Michael Begel

5

Michael Begel

Global Hardware Proposal (MB, DS)

C2104 shown in diagram **Global Trigger Common Module** B2104 has less capacity (72 Mux) but lower cost & power Multiple variations in Mux **GEP** consideration but a Source single design covers all functionality Virtex Ultrascale+ FPGA **Demux** C2104 footprint has up to СТР Source⁻ 104 MGT VU5P/VU7P/VU9P/VU13P **Event Processor (GEP)** max 96 GEP units → max 96 Mux units Source 2 GEP/Module **Rol Distribution** → max 48 GFP Modules Multiplexer (Mux) 2 Mux/Module → max 48 Mux Modules ■ max 96 input fibers/Mux Source: \rightarrow 9216 total input fibers Demultiplexer (Demux) **FELIX** ■ 12 outputs to CTP up to 96 outputs for Rol distribution **FELIX**

https://indico.cern.ch/event/622489/contributions/2511065/attachments/1434734/2205741/20170328 TDAQ Global Trigger Overview.pdf

max 97 downlinks (TTC)

max 193 uplinks

10

Proposal for Firmware Organization (1)

- Suggest a "master" firmware task called Trigger Framework firmware (a la L1Topo) [proposal: MSU]
 - hosted on the Global Event Processor modules (MUX fw separate)
 - firmware needs to be able to adapt to menu changes
 - responsible for monitoring, buffering, synchronization, keeping track of trigger objects, resource management
 - <u>lesson learned from L1Topo</u>: challenging task, should develop in parallel with hardware
- Algorithm firmware modules (including non-US scope) will then plug into this framework; natural host for integration
 - topoclustering, jet-finding, pileup suppression, electron ID, tau ID, etc...
- Define NSF scope boundary as after incoming data is unpacked into memory until it is repacked for transmission
 - DOE scope FW is all "low-level" fw (frame, i/o, control, etc)

Proposal for Firmware Organization (2)

- See additional document from Stefano Veneziano
- Firmware development will be scrutinized much more closely than in the past (lessons learned from L1Topo, FTK)
- Integration is expected to happen progressively
- Trigger framework task will help address these concerns
- Even if an algorithm slips, it will be decoupled from running remaining algorithms in the trigger system
- Flexibility to adjust timing individual algorithm development to match budget profile, if needed

Proposal for Firmware Organization (3)

WBS organization:

- trigger framework, integration (MSU)
- topoclustering (Oregon, MSU)
- jet-finding (Indiana)
- hadronic reco (Chicago)
- pileup suppression (Pitt)

Strategy for Task Lists

- Need good synchronization with hardware
 - however, realities of DOE vs NSF budget profiles may make this a challenge
- Hardware development stages (MB dates):
 - * R&D [through Q3 2017]
 - ❖ Initial Design Review: Q4 2017
 - Design (demonstrator) [through Q2 2019]
 - Preliminary Design Review: Q3 2019
 - Prototype v1 [through Q4 2020]
 - Prototype v2 [through Q4 2021], Integration test
 - Final Design Review: Q1 2022
 - Prototype v3 [through Q4 2022], Integration test
 - Production Readiness Review: Q4 2022
 - ❖ 10% boards at CERN, Integration test [Q2 2023]
 - Green light for full production: end Q3 2023
 - All boards at CERN: end Q4 2023

Strategy for Task Lists

- Need good synchronization with hardware
 - however, realities of DOE vs NSF budget profiles may make this a challenge
- Hardware development stages (MB dates):
 - * R&D [through Q3 2017]
 - ❖ Initial Design Review: Q4 2017
 - Design (demonstrator) [through Q2 2019]
 - Preliminary Design Review: Q3 2019
 - Prototype v1 [through Q4 2020]
 - ❖ Prototype v2 [through Q4 2021], Integration test ← v1 trigger framework fw
 - Final Design Review: Q1 2022
 - ❖ Prototype v3 [through Q4 2022], Integration test ← v2 trigger framework fw
 - Production Readiness Review: Q4 2022

 - Green light for full production: end Q3 2023
 - All boards at CERN: end Q4 2023

NSF PDR: Q3 2017

topo, jet-finding R&D

trigger framework IDR: Q4 2019

trigger framework FW FDR ~Q1 2022

algorithm FDR ~Q4 2022

"PRR" for trigger framework fw

prod trigger framework fw

Next Steps

- Converge (w/ DOE HW scope) on milestone dates, scope boundary
- Develop trigger framework fw task list (SM, WF)
- ❖ Determine scope of "hadronic reco" and "pileup suppression" algorithm development (DM, TMH)